
On kinematic relationships on slip surfaces 645 

some proportionality coefficient. 
Choosing the coordinate axes ti coincident with the principal axes of the strain rate 

tensor, we obtain from (1. I) and the incompressibility condition 

eti =e, + e2 + e3 =u[,~ =0 (1.2) 

a system Of equations [uJvl + [u&2 + [uJv3 = 0 (1.3) 

klIv2 + [UZlVl =b&+ Ikl% =bzl% + [%I% =o (4.4) 
Eqs. (1.4) have nontrivial solutions in [ZQ] under the condition that V~V~V~ = 0. 

To be definite, let us assume va = 0, then it follows from (1.3). (1.4) that 

Vl =&l/2 fz v2 =-p/21/2; [us] =.o (1.5) 

Therefore, the discontinuous surfaces in the velocity coincide with the maximum 

shear surfaces (slip surfaces). The projection of the velocity vector on the principal 
direction in the tangent plane to the discontinuous surface is continuous upon passage 

through this surface. 
Let us note that the slip surfaces for an arbitrary state of stress occur only under the 

Tresca plasticity conditions. For the rest of the plasticity conditions they are possible 

only for completely specific values of the stress deviator which will assure continuity 
of the stress deviator on the slip surface. From the continuity of the deviator and (0.4) 
we obtain that the stresses themselves are also continuous. 

Slip surfaces along which the state of stress corresponds to the face of the Tresca plas- 

ticity condition are an exception, In this case the direction cosines of the principal 
axes of the stress tensor are continuous, and the mean principal stress tangent to the sur- 

face of discontinuity can undergo a discontinuity. 

Let us turn to a determination of the relationship on the discontinuous surface 2. 
The material experiances pure shear on the slip surface, hence, the strain rates are con- 

nected by the relationships [5] 

% = ethvhvj + 8jAVhVi (4.6) 

The validity of (1.6) is seen easily by putting the coordinate axes coincident with 

the principal axes of the tensor eij. We hence obtain 

et + ej = 0, eL = 0, Vi = &Vj = ‘/aJQ (ififk) 

Let us introduce a curvilinear y,, ys coordinate system on the slip surface. Then the 
derivatives of the displacement velocities can be represented as 

Uirj = ui,nVj + @Ui,aXj,$ (1*7) 
where gas is the contravariant metric tensor of the surface, ri (y=) is its parametric 
equation, Ui,n is the derivative of the vector ui with respect to the normal, n to the 

slip surface. 
Substituting (1.7) into (0.3) we obtain 

&j = %,~VJ + Uj,nVi + gap (%4,h. + uj,Qxl $1 (W 

Utilizing (1.2) and (1.8). we obtain from (1.6) a system of three linear differential 

equations [5] in u1 Ul,oXt,+ + Ut,tXQJ = 0 (1.0) 

Let us represent (1.9) somewhat differently 

(U&,T),O + (Ui~i,Cr),z - 2GG,ro = O (1.10) 
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Let us note that the relationships 

Here bx+ / (ly, is the covariant derivative of the vector ~i,~ with respect to y,,; rtoz 

is the Cliristoffel symbol corresponding to the metric of the surface, b,B are coefficients 

of the second fundamental quadratic form of the surface. Utilizing (1.11). we obtain 
from (1.10) ~+,a + uo,+ - 2botu,, - 2I’ar=ua = 0 (1.12) 
where U, is the velocity vector component along the normal to the surface. 

After passage from partial to covariant differentiation in (1.12). we obtain 
6U 
-2 

8% 

Wl +6y,-- 
2bafu, = 0 (1.13) 

In the contravariant comnonents of the velocity vector (1.13) becomes 

(1.14) 

Multiplying (1.14) by got, we obtain after summation 

2szu, = Wlby, (1.15) 

where 251 = b,,&@ is the mean curvature of the slip surface. Eliminating u, from 
(1.14) by using (1.15), we ;;ve 

52 ;&. + St ~g,.--b,,‘~ = 0 
0 (1.16) 

T (I 
Only two of the three equations in (1.16) are independent since we obtain an identity 

after convolution with g”’ . Therefore, the relationships (1.16) define two homogeneous 
equations with two unknown variables and two unknown functions. The asymptotic direc- 

tions of the slip surface are characteristic for the system (1.16). and it is hyperbolic, 
elliptic, or parabolic if the Gaussian curvature of the surface is negative, positive, or zero, 
respectively. If the characteristic lines are chosen as curvilinear coordinates on the sur- 

face, then taking into account that b 11 = bzz = 0 ( [7], p.281), relationships (1.16) 
become g,,&P/8y, = 0 (not summed over ‘t ). 

The relationships (1.12) hold on both sides of the velocity surface of discontinuity. 

Taking into account that the normal velocity component u, is contimuous, we obtain 
from (1.12) [%I,0 f M,+ - 2G h&l = 0 (1.17) 

Let us select an orthogonal system of curvilinear coordinatesy,, and let us direct the 
z/o axis along the principal axis in the tangent plane to the discontinuous surface. Taking 

into account that IUs] = O,we have from (1.17) 

rap1 h1i = 0, I4,2 - r121 b,i = 0, [uJ,~ - r,,l [u,] = 0 (1.18) 

The Christoffel symbols in an orthogonal coordinate system are r71: 

Taking account of (1.19), we obtain from (1.18) 

45, = 91 (Yz), [%I = ‘Pa (Yl) &I = 9s (Yd %I 

It follows from (1.20) that the geometry of the velocity surfaces of discontinuity should 

be such that the relationships 

ada =- h lY2)t g11 = {%i (Yz)h IYI))” (1.21) 
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will hold for gt, and gss under the abovementioned choice of curvilinear coordinates. 

Let us make a change of coordinates on the discontinuous surface by means of Formulas 

Yl = F1 (%)P Y, = Fa (2,) 

The lines ya = const hence go over into the lines zs = const. If’ Fsand F, are 

selected so that dF,ldz, = (~3, (dFJd@ = i/q+, then the metric tensor in the new 

coordinate system is 
&s = 1, Zt = ‘paa (Fs (22)) (1.22) 

It follows from (1.22) that the velocity surfaces of discontinuity can only be surfaces 
of rotation for any plasticity conditions except the edge of the Tresca plasticity condition, 

where one of the principal directions of the tensor ail coincides with the directions of the 
geodesic lines. 

In the plane strain case the surface 2 is a cylinder along whose generatrix Us = 0. 
As the curves ys, #i, respectively, let us take the generators of this surface and ortho- 

gonal lines, ler yo,be the distance along these lines measured from some point. The equa- 
lities 
ga,, = g”@= 1, I’,,+’ = 0, 252 = x1 = deldy, u, = ua, &Jdy, = du,ldy, 

hold for such a choice of the curvilinear coordinate system. 
Here SC, is the curvature of the line ya = COnst. Then taking account of these equa- 

lities, we obtain the Geiringer relationship from (1.15) 

Ul - u&l = 0 

and from (1.18) we obtain that [u,] = const on the slip surface. 
If the state of stress corresponds to the edge of the Tresca flow surface, then 

01 = ua = us f 2k (1.23) 

Hence, the direction of the third principal stress has been determined, and the direc- 
tions of ut and oa remain undetermined. We represent the strain rates as 

&fj = QJj + wwj + e,npj (1.24) 

where er, es, e, are the principal values of the tensor a,,; ti, mi, ni are the direction 

cosines of its principal axes which satisfy the conditions 

l&j + mimj + ninj = 6~ (1.25) 

As has been shown in [l and a], the system of equations for an ideal rigidly plastic body 
under the conditions (1.23) is statically determinate, i. e. the values of ui, ~3, ~3, ni 

can be determined without involving (1.64). Hence, in examining the relationship (1.24) 
we will assume the nt known, and the El, mf undetermined, but satisfying the conditions 
(1.25) ; where to satisfy the associated flow law it is necessary and sufficient to determine 

the tensor ~fj so that the relationships 

e, + es + e3 = 0, ICal > lC,lt leaI> IQI (1.26) 
would hold. 

Multiplying (1.34) by nt, we obtain 

eifnf = a3ni (1.27) 

Since a3 = ekfnknj, the relationships (1.27) are written as 

atlnl = a+ jnk n jni (1.28) 

Only two of the Eqs. (1.2 8) are independent since the system (1. P 8) convoluted with 
nt becomes an identity. We obtain the third independent equation from (1.24) by equa- 
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ting the subscripts i and j , and taking account of (1.26). We hence have eli = (l. 
Consequently, the kinematic relationships for the total plasticity condition can be 

written by using (0.3) as 

Ui,t = 0, t$,jnl + uj,inj = 24trnknrnt (1.29) 

Let the total plasticity condition (1.23) hold on both sides of the velocity surface of 
discontinuity 2,. Because of the continuity of the stresses on this surface, the quantities 

are continuous, and we obtain from (1.2 9) 

[$,*I = 0, hi,jl nj + [Uj,J nj = 2 h&J n&n,ni (1.30) 

It follows from the geometric relationships (1.7) that the jumps in the partial deriva- 
tives of the velocity on the discontinuous surface Z are 

[UJ = BiYj + gas ]%lr&,BV Bi = [C,] (1.31) 

Substituting their values from (1.31) in place of [Us,] in (1.30) we have 

&vi + g”a [~tl,axi,~ = 0 (1.32) 

(BPJ + BP,) fij + P ([dzq,~ + [ujlto~) nj = 

= 2Bm,n,v,nt + 2g”b IUI, l,,gzkxr, prni (1.33) 

Eliminating the quantities Bi from (1.32). (1.33). and taking into account that - 
nivi = l/s 12 on the velocity surface of discontinuity, we obtain 

1/z@ Iuil,crxj, ppi - g”fl IUJ, axi, 0 = 2g=fi h.4RlranRxr,p r (1.34) 

Since the projections of the velocity vector discontinuity on the principal direction 
in the tangent plane to the discontinuous surface equals zero, the vector [u,] is in the 
same plane as the vectors n, and vi. Hence, taking account of the continuity of the nor- 
mal component of the velocity vector to the surface 2, we can represent (u,] as 

[uil = (JCSz, - vi) V (1.35) 

where v (yi, ys) is a function characterizing the intensity of the velocity vector dis- 
continuity. 

Substituting its value from (1.35) in place of [ui] in (1.34), we obtain 

2 @ga8 V,enixt,fl + Pa (1/zni,, - Yi,a) “i,pv = O (1.36) 

Eq. (1.36) defines the connection of the intensity in the velocity discontinuity to the 
geometric characteristics of the surface 2. 

Since nlvf = Val/z, the following holds: 

g=s (1/%,, OL - vi, (I) xi. /3 = 1/&+ {@ts, 8). CI - K&i, 0%) (1.37) 

Let us select orthogonal curvilinear coordinates such that yl would coincide with the 
direction of the vector i”j]. Then 

azi = 
ni ayl 

Rll 'A 

i ) 2' 

naZ'=O 

f &I!4 
(1.38) 

Taking account of (1.19). (1.38) and (1.37), let us transform (1.36) to 

4&z g+ p-%!+() 

After integrating (1.39), we obtain 

(&2)1/4V = (&a”)“~ v, 

(1.39) 

(1.40) 
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where V,, and gaao are the values of v and &a at some point on the line ys = const. 
Therefore, for a state of stress corresponding to the edge of the prism of the Tresca 

plasticity condition, the surfaces of velocity discontinuity can be of arbirtary shape, on 

which the integral (1.40) holds along a streamline of the vector [ ul], 

For any other plasticity condition, including even the Tresca faces, surfaces of velocity 
discontinuity are possible but they must be surfaces superposable on surfaces of revolution. 

2, Let us consider the strain rate surface of discontinuity. On both sides of the surface 

G on which the displacement velocities are continuous but the strain rates undergo dis- 

continuity, let the state of stress correspond to the smooth section of the plasticity condi- 
tion. According to the results in [8], the strain rates are continuous on the surface of 
stress discontinuity. An exception is a face of the Tresca prism. 

In this case the strain rates may undergo a discontinuity on the stress discontinuous 
surface ; however, the direction cosines of the principal axes of the stress tensor will be 

continuous. Hence, it follows that the stresses are continuous on the strain rate discon- 
tinous surface, with the possible exception of the Tresca face. 

We consequently obtain from (0.3) 

[et,1 = [hlfl, (2.1) 
The system of equations (2.1) holds even for the face of the Tresca plasticity condi- 

tion since in this case the quantity flj depends only on the direction cosines of the 

principal axes of the stress tensor, which are continuous. From (0.3) and (2.1) we have 

[erjl = r/s (ht,jl + [q,A) = IWil (2.2) 
Since the displacement velocities are continuous, then [ul,jl = B,v/ , and (2.2) 

becomes 
BPl + BJ.Y = 2Wlj (2.3) 

Selecting the coordinate axes to coincide with the principal axes of the stress tensor, 
we obtain from (2.3) and the incompressibility condition (1.2) 

Brvt + &vs + Ma = 0 (2.4) 

Blvz + Bzvl = B1vS + BsvI = Bava + BSva = 0 (2.5) 

Comparing (2.4), (2.5) with (1.3). (1.4), we note that they will agree if the quantity 

lull is substituted instead of Bi in (2.4). (2.5). Hence, all the properties obtained for 
the discontinuous surfaces of the displacement velocities will also hold for the disconti- 
nuous surfaces of the strain rates. In particular, the strain rate discontinuous surfaces 
coincide with the surfaces of maximum shear, one of the principal directions of the ten- 

sor otj and the vector Bi lie in the tangent plane to the surface G and are mutually 
orthogonal. 

Let us find differential relationships for the strain rate discontinuities along the surface 
G. Let the state of stress satisfy the Tresca face. Then the relationships of the associ- 

ated flow law (2.2) can be represented in the form 

% = h. (“rmj - wJ) P-6) 

Let us note that the quantities mt, ni 11 are continuous on the surface G and satisfy 
the conditions 

npaf - mlmt = lilt = 1, nimt = nlll = llml = 0 (2.7) 

Let US introduce into the considerations 
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It then follows from (2.7) that 

Mfml = Nfnt = Ltll = 0, Milt +Llmi = 0 

NiZt +Ltni = 0, Nfmt + Mini = 0 

i.e. the vectors Nt , Ml, Li are orthogonal to the vectors nl, ml, Ii, respectively, 
and are representable as 

N, = - Nm, + LZ,, MI = Nnt + Ml,, L, = -Mmi - Lnt (2.8) 

It follows from (2.6) that 

[ati, k] vk = B (TTli?Tlj - ninj) + [Al (mi (Mj) + (Mi) mj- ni (Nj) - 

- (N,) nj) + (A) (mi [Mj] + [n/r,] mj- ni [Nj]- [Ni]nj, B E [dhldnl (2-g) 

Here the symbol (...) denotes the mean value of the appropriate quantities ; the 

identity lab1 = (a) [bl + Ia] is used in the derivation. Using the second order 
geometric compatibility conditions [3] 

]uf, jkl = AiVjvk + PB,, a (Xj, Bvk + xk. ,G’j) - B,ga’gaTLxj, ,@k. + 

and taking account of (2.6). we obtain from (2.9) 
( Ai = daui / ha) 

Atvj + Ajvr + gap (4 axj, p + Bj, axi, 0) = 2 {B (mtmj - ninj) + 

+ P (minj + n+j) + Q (milj + m&i) - R (nilj -t ltnj)} (2.10) 

P = 2 (IN1 0) + <N) (ihI>), Q = [Al (W + IW O), R=Pl (L) + [Ll (A) 

Equating the subscripts i and j in (2. lo), we have 

Aiv, + @Bi, a8, a = 0 (2.11) 
After multiplying (2.10) by vj and taking account of (2.11). we obtain (2.12) 

A, = gaPBk, a (xk, 103 -xi, Bvk) + fi{B (ml - nt) + P (mi + 4) + (Q - R) ZJ 
It has here been taken into account that on the surface G 

nfvt = ?TZiVi = l/2 1/i& Z*v = 0 

Let us note that the vector vi can be represented as 

vi = Vs)/qmt $ nl) (2.13) 

Eliminating the Al from (2.10) by utilizing (2. 12). and taking account of (2.13). 
we obtain 

g”aBk, a{ hk, @vtvj - (Xi. BVj $_ 9, Pi) vk) + gap (Xi. aBj, B + Xj. aBf, e) = 

= - 2P (mfmj + n,nj) + (Q + R) (m,Zj + Zimj - Zing - Zjni) (2.14) 
Only three of the six Eqs. (2.14) are independent, since they reduce to one equation 

after the subscripts i and i have been equalized, or after having been multiplied by 

Vlt vj l 

To determine the independent equations, let us multiply (2.14) by zio Xl,+ whence 
we have &,rzi.o + Bi,ozf,s = - 2P (m,mj + Wj) Xi,tXj,o + (2.15) 

+ (0 + RI (mill + & - n&j - q4) q+qa 
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Transforming the left side of (2.15) by the scheme for the transformation of (1.9), we 
obtain 

&o+%.- 2I?,,“B, = - 2P (m,mj + npj) XL &, o -I- 

+ (Q + n) (miZj + ltmj - dj - n&d Xi, dj. o (2.16) 

Let US represent the vectors Xi,+ as 

(2.17) 

The curvilinear mesh yl, ys has here been chosen orthogonal. hence the directions 
of Bi and yl coincide. 

Substituting (8.17) into (z&16), we obtain 

ah 
- - rll’B, = - Pgll, rcra’ = 0, ‘2 aY1 = 2r,z’B, + (Q + W (~g,lgza~“B (2.18) 

From the second equation of (2.18) and (1.19) we obtain that 

l?aa = a2 (Yo) 

It hence follows that the intermediate principal axes of the tensor ail coincide with 
the directions of the geodesic lines on the strain rate syrface of discontinuity. 
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